x
uploads/magic square.jpg

magic square 縱橫圖,幻方〔一大方框分成井字形的小方框,小方框中的數字...

magical

The first part is on the author cui xiding ( 崔 錫 鼎 ) . cui xiding ( 1645 - 1715 year ) , another name was ruhe , styled minggu , posthumous name was wenzhen , minister of suzong ( 肅 宗 ) of yi dynasty , wrote jingshizhengyuntushuo ( 經世 正 韻 圖說 ) and mingguji ( 明 谷 集 ) , compiled zuoshijixuan ( 左 氏 輯 選 ) . this part briefs party conflict of the time of cui xiding , digests the relevant records of cui xiding of factual records of yi dynasty ( 李 朝 實錄 ) the second part summarize jiushulue “ contents . jiushulue includes four parts , firstly dividing part introduee the main contents , and put great emphasis on to analyze some magic square by cui xiding himself created , evaluate dividing of cui xiding so - called confueianists being good at algorithm and magieians being good at algorithm 這一部分簡介了崔錫鼎所處時代的黨爭情況,摘錄了《李朝實錄》有關崔錫鼎的社會活動情況。第二部分概述了《九數略》的內容。 《九數略》共四篇,首先分篇介紹了主要內容,著重分析了崔錫鼎自創的一些縱橫圖,并評價了崔氏所謂“儒家明算法者”和“術士精算法者”的劃分。

This part gives a study on the some objects in combinatorics researched in the middle ages . those researches are substantially composed by search for the formulae of permutation and combination , the arithmetical triangle and the magic square 二、考察了中世紀數學家對組合學相關內容的研究,主要體現在排列、組合公式的探求,確立算術三角形和構作幻方三個專題。

Moreover , in order to raise the watermark ' s security and keep resilience to cropping attack , we used the magic square shuffling techniques in watermark image before embed the mark 此外,為了提高水印的安全性和對剪切的抵抗性,在嵌入水印前,還先對水印進行了幻方置亂預處理。

The order 3 magic square appeared in ancient china is the oldest instance for combinatorial design . there also were a large number of examples on magic square in ancient india and arab 出現于中國的3階幻方是組合設計的最早特例,在印度、阿拉伯等國家對幻方也有較早的研究。

This photograph of the same magic square was taken by gordon brindle whilst on holiday in barcelona to celebrate his wife ' s birthday 為了慶祝他的妻子生日,在一個假日,他-戈登斑在巴塞羅那照了這相同的幻方的照片。

Jiushulue , in regard to contents besides its author creating some magic square , did not overstep the times of its author 《九數略》就其數學內容來說除了作者自創的幾個縱橫圖,沒有超越其所處的時代。

Magic mapping , magic group and magic square 幻群與幻方

A simple and convenient structuring method of magic square of 2n 1 orders 1階幻方的一種簡便構造法

A structure law of even - rank magic squares 偶階幻方的一種構造規律

Study and design for the magic square intersector in turbo code 碼中幻方交織器的研究與設計

Constructing pandiagonal snowflake magic squares of odd order 奇數階泛對角線雪花幻方的構作